Translate

Saturday, June 30, 2012

conic section


circle conicellipse conicparabola conichyperbola conic
Circle
graph circle (horiz.)
Ellipse (h)
graph ellipse (horiz.)
Parabola (h)
graph parabola (horiz.)
Hyperbola (h)
graph hyperbola (horiz.)
Definition:
A conic section is the intersection of a plane and a cone.
Ellipse (v)
graph ellipse (vert.)
Parabola (v)
graph parabola (vert.)
Hyperbola (v)
graph hyperbola (vert.)

By changing the angle and location of intersection, we can produce a circle, ellipse, parabola or hyperbola; or in the special case when the plane touches the vertex: a point, line or 2 intersecting lines.
point conicline conicdouble line conic
Point
graph point conic
Line
graph line conic
Double Line


The General Equation for a Conic Section:
Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

The type of section can be found from the sign of: B2 - 4AC
If B2 - 4AC is...then the curve is a...
 < 0ellipse, circle, point or no curve.
 = 0parabola, 2 parallel lines, 1 line or no curve.
 > 0hyperbola or 2 intersecting lines.

The Conic Sections. For any of the below with a center (j, k) instead of (0, 0), replace each x term with (x-j) and each y term with (y-k).

 CircleEllipseParabolaHyperbola
Equation (horiz. vertex):x2 + y2 = r2x2 / a2 + y2/ b2 = 14px = y2x2 / a2 - y2 / b2= 1
Equations of Asymptotes:   y = ± (b/a)x
Equation (vert. vertex):x2 + y2 = r2y2 / a2 + x2/ b2 = 14py = x2y2 / a2 - x2 / b2= 1
Equations of Asymptotes:   x = ± (b/a)y
Variables:r = circle radiusa = major radius (= 1/2 length major axis)
b = minor radius (= 1/2 length minor axis)
c = distance center to focus
p = distance from vertex to focus (or directrix)a = 1/2 length major axis
b = 1/2 length minor axis
c = distance center to focus
Eccentricity:0c/a1c/a
Relation to Focus:p = 0a2 - b2 = c2p = pa2 + b2 = c2
Definition: is the locus of all points which meet the condition...distance to the origin is constantsum of distances to each focus is constantdistance to focus = distance to directrixdifference between distances to each foci is constant
Related Topics:Geometry section on Circles   






(a+b) 2 = a 2 + 2ab + b 2
(a+b)(c+d) = ac + ad + bc + bd
a 2 - b 2 = (a+b)(a-b) (Difference of squares)
a 3 (+-) b 3 = (a (+-) b)(a 2(-+) ab + b 2(Sum and Difference of Cubes)
x 2 + (a+b)x + AB = (x + a)(x + b)
if ax 2 + bx + c = 0 then x = ( -b (+-)sqrt(b 2 - 4ac) ) / 2a (Quadratic Formula)

Powers

x a x b = x (a + b)x a y a = (xy) a
(x a) b = x (ab)
x (a/b) = bth root of (x a) = ( bth (root)(x) ) a
x (-a) = 1 / x a
x (a - b) = x a / x b

Logarithms

y = logb(x) if and only if x=b ylogb(1) = 0
logb(b) = 1
logb(x*y) = logb(x) + logb(y)
logb(x/y) = logb(x) - logb(y)
logb(x n) = n logb(x)
logb(x) = logb(c) * logc(x) = logc(x) / logc(b)






  
  


Conic Sections
(see also Conic Sections)
Point

x^2 + y^2 = 0
Circle

x^2 + y^2 = r^2
Ellipse

x^2 / a^2 + y^2 / b^2= 1
Ellipse

x^2 / b^2 + y^2 / a^2= 1
Hyperbola

x^2 / a^2 - y^2 / b^2= 1
Parabola

4px = y^2
Parabola

4py = x^2
Hyperbola

y^2 / a^2 - x^2 / b^2= 1
For any of the above with a center at (j, k) instead of (0,0), replace each x term with (x-j) and each y term with (y-k) to get the desired equation.

 


No comments:

Post a Comment